Fitting a near horizontal plane.

Ed Williams

December 8, 2016

1 Introduction

Best-fitting a plane to an arbitrary collection \(x_i, y_i, z_i \) of \(N \) points in three space is typically done by minimizing the sum of the squares of the perpendicular distances of the points from the plane. This minimizes

\[
E_0 = \sum_i \left(\frac{(ax_i + by_i + cz_i)}{\sqrt{a^2 + b^2 + c^2}} - d\right)^2
\]

over the choices of \(\{a, b, c, d\} \) This is best done by singular value decomposition. However, if we take advantage of an assumption that the required plane is close to being one of constant \(z \), we can instead minimize

\[
E = \sum_i (z - z_i)^2 = \sum_i (ax_i + by_i + d - z_i)^2
\]

which is the sum of the squares of the height \(z \) deviations of the sample points from the fitting plane \(z = ax + by + d \). This is a much simpler problem that has an explicit solution requiring no iteration or linear algebra package. The minimum of \(E \) occurs when the partial derivatives of \(E \) vanish, that is:

\[
\frac{\partial E}{\partial a} = \frac{\partial E}{\partial b} = \frac{\partial E}{\partial d} = 0
\]

We can write these as:

\[
a \bar{x}^2 + b \bar{xy} + d \bar{x} - \bar{z} \bar{x} = 0 \tag{4}
\]

\[
a \bar{xy} + b \bar{y}^2 + d \bar{y} - \bar{z} \bar{y} = 0 \tag{5}
\]

\[
a \bar{x} + b \bar{y} + d - \bar{z} = 0 \tag{6}
\]

where the barred quantities are averages over the set of points, e. g.:

\[
\bar{x} \equiv \frac{\sum_i x_i}{N} \tag{7}
\]

\[
\bar{xy} \equiv \frac{\sum_i x_i y_i}{N} \tag{8}
\]

1
and so on.

Equation 6 tells us the centroid of our point set \(\{x, y, z\} \) lies on the best fit plane. We can thus simplify Eqs. 4 and 5 by rewriting them in terms of coordinates relative to the centroid, that is

\[
 X_i \equiv x_i - \bar{x} \quad (9)
\]
\[
 Y_i \equiv y_i - \bar{y} \quad (10)
\]
\[
 Z_i \equiv z_i - \bar{z} \quad (11)
\]

when they become

\[
 a \bar{X}^2 + b \bar{X} \bar{Y} = \bar{X} \bar{Z} \quad (12)
\]
\[
 a \bar{X} \bar{Y} + b \bar{Y}^2 = \bar{Y} \bar{Z} \quad (13)
\]

which we can readily solve for \(a \) and \(b \)

\[
 a = \frac{(\bar{X} \bar{Z} \bar{Y}^2 - \bar{Y} \bar{Z} \bar{X} \bar{Y})}{D} \quad (14)
\]
\[
 b = \frac{(\bar{Y} \bar{Z} \bar{X}^2 - \bar{X} \bar{Z} \bar{X} \bar{Y})}{D} \quad (15)
\]

\[
 D \equiv \bar{X}^2 \bar{Y}^2 - (\bar{X} \bar{Y})^2 \quad (16)
\]

\(d \) comes from Eq. 6:

\[
 d = \bar{z} - a \bar{x} - b \bar{y} \quad (17)
\]

giving us the parameters \(\{a, b, d\} \) of our least squares fit plane.

Note that \(a \) and \(b \) do not exist if \(D = 0 \), which is, in fact, the condition that we have at least 3 \(\{x_i, y_i\} \) points, and that they are not all collinear. These are the geometrical requirements that a best fit plane exists.

Algorithmically, first compute \(\bar{x}, \bar{y} \) and \(\bar{z} \) from the \(\{x_i, y_i, z_i\} \). Then replace the \(\{x_i, y_i, z_i\} \) with \(\{X_i, Y_i, Z_i\} \) using Eqs. 9-11.

Use these to compute the moments \(\{\bar{X}^2, \bar{Y}^2, \bar{X} \bar{Y}, \bar{X} \bar{Z}, \bar{Y} \bar{Z}\} \) by

\[
 \bar{X}^2 = \sum_i X_i^2/N \quad (18)
\]
\[
 \bar{Y}^2 = \sum_i Y_i^2/N \quad (19)
\]
\[
 \bar{X} \bar{Y} = \sum_i X_i Y_i/N \quad (20)
\]

etc.

Use Eq. 16 to compute \(D \). If it is near zero to rounding error, throw an error condition. Otherwise compute \(a, b \) and \(d \), the parameters of our best fit plane \(z = ax + by + d \), from Eqs. 14, 15 and 17 respectively.

This requires no iteration and minimal storage beyond that of the original point array.
2 Fitting an arbitrary plane

Finding the best fit (minimum of E_0) from Eq. 1 requires a more sophisticated approach. We use the method of Lagrange multipliers, instead minimizing $\sum_i (ax_i + by_i + cz_i - d)^2$ subject to the constraint $a^2 + b^2 + c^2 = 1$. Geometrically, $\{a, b, c\}$ is a unit normal to the plane, and d is the distance to the plane from the origin.

We thus minimize the function

$$E_2 = \sum_i (ax_i + by_i + cz_i - d)^2 - \lambda(a^2 + b^2 + c^2) \quad (21)$$

with respect to $\{a, b, c, d\}$, obtaining

$$a\overline{x}^2 + b\overline{y} + c\overline{z} - d\overline{x} = \lambda a \quad (22)$$
$$a\overline{x}\overline{y} + b\overline{y}^2 + c\overline{y}\overline{z} - d\overline{y} = \lambda b \quad (23)$$
$$a\overline{x}\overline{z} + b\overline{y}\overline{z} + c\overline{z}^2 - d\overline{z} = \lambda c \quad (24)$$
$$a\overline{x} + b\overline{y} + c\overline{z} - d = 0 \quad (25)$$

As before, Eq. 25 tells us that the centroid lies on our fitting plane, so we again use coordinates relative to the centroid (Eqs. 4-6), obtaining

$$M \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \\ c \end{pmatrix} \quad (26)$$

Note that the square error is given by

$$\sum_i (ax_i + by_i + cz_i - d)^2 = \sum_i (aX_i + bY_i + cZ_i)^2 = N (a \quad b \quad c) M \begin{pmatrix} a \\ b \\ c \end{pmatrix} = N\lambda \quad (27)$$

$(a \quad b \quad c)$ is thus the normalized eigenvector of M with the smallest eigenvalue. A linear algebra package, involving iteration is required to solve this. d is then obtained from Eq. 25.